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noisy observations at a finite number of sampling points is considered. The

performance of sampling designs with optimal or suboptimal, but easily
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cases are studied including additive independent noise, nonlinear distortion

with noise, and quantization noise.
AIR FOJVIUD7f71537 SgM W711C RZSIrL4CM (APSL -
NOQT HS 01 7. I' r3'trAL rO DT IC
This teohvio ri "' > 1i n -9Vt0w~d rind IF
approfd fr. A*.4 " .'t A' I 19-12.

MA rnumjW. K3;Z2,
Chief, Teehnieni Tnfora.tlon Division

Research supported by AFOSR Grant No. F49620 82 C 0009.

,. .-. . .
-' . . . . . . . . . . . . . . . . -



I. INTRODUCTION

The problem of estimating a weighted integral of a random process from

observations of the process at a finite number of samplinq points has been

studied by several authors (see the survey [2]). It is an important problem

of interest in several areas of communications, information theory, statistics,

and signal processing. The usual questions of interest are to find the optimal

sampling design of size n, or sampling designs which are asymptotically optimal

as the sample size tends to infinity. Coupled with these is the problem of

estimator design and the study of how the mean square estimation error tends

to zero as the sample size tend to infinity.

In this paper we consider these problems for the case where the observa-

tions are corrupted by noise. We allow the noise to be possibly dependent

upon the random process whose integral we are trying to estimate, henceforth

called the signal process. In this case as the number of sampling points

increases to infinity the mean square approximation error no lonqer tends to

zero but instead to some positive least possible value. We consider estimators

which use optimal coefficients as well as suboptimal (but simple) coefficients.

As far as the authors are aware, the only case of noisy observations

considered in the literature is in [5,6], where the observation noise is

assumed white and the signal Gauss-Markov. The optimal sampling designs are

determined in [5] and the rates of convergence of the mean square estimation

error are found in [6] to be 1/n with noise and 1/n with no noise.

One of the main contributions of this paper is to show that these mean

square estimation errors and their rate of convergence to least possible

values depend crucially on the solution of a certain Aiener-Hop)f inteiral equa-

tion. If the solution to the intenral equation is smooth and contains at most

A
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Dirac delta functions, but not derivatives of delta functions, then

asymptotically optimal sampling designs can be chosen for both kinds of

estimators. Otherwise the rate of convergence of the optimal coefficient

estimator is not known. Fortunately the rate of convergence of simple

coefficient estimators can still be found even in this case, but their

asymptotic mean square estimation error is not the least possible, even thouqh .

it can be made arbitrarily close.

In Section II we develop the general set up and solution to the problem.

In Section III we consider in more detail the cases of additive observation

noise, of nonlinear signal distortion plus additive noise, and of quantization

noise. In particular we see that while additive noise of comparable smoothness

with the signal does not affect the rates of convergence (but does affect the

asymptotic constants), quantization noise also reduces the convergence rate.

Throughout the paper we consider in detail the case of random processes

with no quadratic mean derivative, both for simplicity of exposition and be-

cause several questions remain still unresolved when quadratic derivatives of

order two and higher exist (the case of only one quadratic mean derivative be-

ing similar to that of no quadratic mean derivative).

In this paper we consider only two kinds of (nonrandom) sampling design.

They generalize periodic sampling which includes the endpoints a and b, and per-

iodic sampling which does not include the endpoints but is symmetrically spaced

in the observation interval. Choose a continuous, positive probability density

h on the interval [a,b]. Regular sampling chooses for each n as the n sampling

points Tn= {tnl,..., t } all (n-l)-I percentiles of h:

tnkh(t) dt k-l
ltk n-T k 1,2,...,n,
a
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and we refer to {T nI as a sequence of regular sampling designs generated by the

density h. Median sampling chooses for each n as the n sampling points T n

1 %1'-"' t nn I the medians of a regular sequence of designs:

t n ~ ) d t =_ 2 - k 1,2 , ...,n ,
a n

and we refer to IT }as a sequence of median samplingj desilns generated by the

density h. ihen h is the uniform density, both rejular and median sampling be- .

come periodic, the former including the interval endpoints while the latter does not.

We will use the following notation in order to simplify the text. With

T = (ti2 ... tn) an n-point subset of [a,b] and with functions f(t) defined on

[a,b] and R(s,t) defined on [a,blx[a,b], we will write f for the n-vector

(f(t ),.**,f(t )) and RT for the nxn matrix {R(t.,t.)}n W lofeunl
1 n T ~ ~ ~ ~ ~ 1 i ,j=V-W lofeunl

* delete the range of integration as well as the argument, writing e.g. ffRff

for b R(s,t)f(;)f(t)ds dt.

ar

% 4.
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II. GENERAL CASE

We consider the problem of estimating the weighted integral of a random

process X = {X(t), a < t < b):

I = f X(t) f(t)dt

*from "noisy" observations of the random process Y = {Y(t), a < t < b} at n sample

" points T = {tk}k.n The processes X and Y are assumed to have continuous

correlation functions Rx(s,t) and Ry(s,t) and cross correlation function Ryx(s,t),

and the weighting function f is assumed to be continuous. We restrict attention

to linear estimates with weights cT = (CT,l9...,CTn):

n
TT k=l CTkY(tk) = c. YT

whose mean square approximation error is

e = E(I-IT)2 = 2 _ 2c.gT + c RyTCT (1)

where

2 = E = ff R xff,

1b

s(t) = f Rx(tu) f(u) du, (s = Rxf),
a

b
g(t) = Ry(t,u) f(u) du, (g = Ryf) (2)

If the observation process Y could be observed over the entire interval

[a,b] then the minimum mean square approximation error 2 would be achieved

by the projection I of I onto the linear span of Y, which is determined by

E[I Y(t)] E[i Y(t)]

'1
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for all a < t < b, or equivalently by

g(t) = (Ryxf) (t) = E[li Y(t)].

It follows that g belongs to the reproducing kernel Hilbert space (RKHS) R(Ry)

of Y and

2 El 2 - E 2 2 g (3)00o E -UIR(RY)

Of course when noiseless observations are available, i.e. when Y(t) = X(t),

then g = s and 2 = O. In the general case we always have c2 > O.

Our goal is to choose the sampling points T and the estimator weights cT

in such a way that the resulting mean square estimation error eT should be as

2close to c. as possible.

Optimal Coefficients

For a fixed sample T, the optimal coefficients cT are those which minimize

2the mean square approximation error eT of (1), or equivalently those which make

cTYT the projection of I onto the linear span of YT' They are given by
: R-I

T = g! RYT and thus the oitimal estimator and its mean square 3poroximation

error are

I T g T Y (4)

S2 ,2 R-1 2 -2T -T YT T 1 - PT91 R(Rg ) I

where PTg is the projection of g to the subspace of R(Ry) generated by

{R y(.,t), tr.T}.

• -' '.. . .---. '--'.- -L--" '..'.." -. '. -. -.""-"-."....-..."."".-....-."-."--..".-"...--.---...-.--..-...........-.....-.. . -.- -.-. .".
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The optimal sampling design of size n (if it exists) thus maximizes

liPTg 2  ) over all samplina designs A of size n: T = {a < t < t2< .<t• b).T 1 R ( R y ) • n 1 " " n"

The performance of the optimal designs tends to E02 as the sample size tends to

infinitv,, sincp
2 _ 2 2 _ 2 C2 Ry

inf 2 = ( T-Sup 11PTg1IR(Ry ) n IgIIRR o
TA T(A Y'n YV

'm•n n

% Optimal sampling designs may not exist, and even when they exist it may be

difficult to determine them.

We now consider regular sequences {TnI of sampling designs Tn generated

by a density h, and write Ir,n and cr,n for ITn and £T " As the sampling size n

increases they satisfy

2 2 f 2 2 2 2 EEr,n - I iPTgI R(R) CE: + g - PTI IR(Ry) 2

n Y n Y n

Precise rates of convergence follow from the work of Sacks and Ylvisaker [9,10,11]

in certain cases where the observation process Y has exactly k quadratic mean

derivatives, under the additional assumption that the function g of (2), which

is in the RKHS of Ry, actually belongs to the smaller space r(Ry), the range of

the integral type operator with kernel Ry, i.e.

g(t) = Ry(t,u) (u) du, (g = R y), (5)
a

with : a continuous function. Specifically, under certain regularity conditions,

2k+2 2 2 rb oy_ (t) 2(t)
nk(C -) C -+2- dt, (6)

T k ~ h 42(t)

where Y,k is the jump along the diagonal of the derivative of the (k,k) partial

derivative of Ry, ciyk(t) = Ryk+l (tt- 0)- Ry k+l (t,t +0) >0 (superscripts denoting

partial derivatives). The regularity conditions are specified e.g. in [11] and

need not be repeated here; it should be noted, however, that for k -2 this result

"- "," ". '. ' " ' "." -...- -.'.' ... . . , -• . .- * . ..'. ... ''. . .. ... .'.. . '. .. '.. '. " . . =. . ..., " *1.
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has not yet been established for as broad a class of covariances R as when k= 0,1

(cf. Section 6.1 in [2]). By choosing the density h*(t) which minimizes the right

hand side of (6), i.e. proportional to [C(yk t)p2(t)] /(2k+3) we obtain a regular, k

sequence {Tn} of sampling designs which is asymptotically optimal, i.e. satisfies
,'

2
r*,n

-. 1 ,

inf rT n
TrAn

and

lb1n2k+2( 2 2 2 k+b 2+

n k :+r*n- Eo) Ck{ [gk(t) (t)] dt 2

n a

The regularity conditions are satisfied by stationary processes with rational

spectral densities, the stationary process with triangular covariance, 
the

Wiener process, etc., and in all these cases the jumps rxk(t) of the covariance

derivative are constant. The value of the constant is Ck= B 1(2k + 2)!
k 2k+21

where 3m is the mth Bernoulli coefficient, and Co= 1/12, C1 = 1/720 (see the dis-

cussion in [2, p. 351]).

For simplicity we will consider from now on examples with no quadratic

mean derivative, i.e. k=0, such as the stationary Gauss-Markov process, the

stationary process with triangular covariance, the Wiener process, in which case

. we have

'i r~n - b Y ' t)-- 2 t ) "

n2( C2 - 2) 1 dt. (7)
r,n n h2(t) '

. An asymptotically optimal reqular sequence of designs {T*} is generated by

n
the density h*(t) proportional to [A y "(t)2(t)] 1 / 3 , with

.. 1

2 2 2 1 1 1/3 3 "..
r•,n n a

u

• ,. 
. .
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The Wiener-Hopf Eq. (5)

From (2) and (5) it follows that a sufficient condition for these precise

rates is the existence of a continuous function p such that

Ib ytu¢ud b
b R (t~u)q(u)du = b Ryx(tu)f(u)du (=c(t)), (9)
'a )a

a!t5<b, or Ry O=Ryxf (=9). It may be desirable to first check the existence

of a square integrable solution, and then check its continuity. In this connec-

.ion it is of interest to note that a square integrable solition of the 1iener-

Hopf integral equation (9) will exist for every square integrable f, if (and only

if) any of the following equivalent conditions are satisfied:

(i) r(Ryx) r(R y ,

2 2
(ii) JIRyxell C IRyell for all square integrable functions e

and some finite constant C (where the norm is L2),

(iii) for some finite constant C,

b - b R ~ t u R ~ s u

C }aRy(tu)Ry(su)du R Ya (t'u)Ryx(S'u)du

is a nonnegative definite function of t,.,

(iv) the minimum mean square error linear estimate I of I based on

{Y(t), a < t < b) is of the form (with E L2 ).

I= Y(t) ,(t)dt.

a

In this case the expression of the asymptotic mean square error (3) can be writ-

ten as follows:

22 SfRxff - ffRy, .

0°-.
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p.

Simple Coefficients

Here we consider the very simple choice of (non-optimal) coefficients of
n N.

the following form: for each sample of size n, Tn {tnk}k 1 , we take

-- c(t
Tn,k n nk

for some continuous function c(t). Thus the coefficient cT of Y(t
n,k nk

depends only on the sample point tnk via an appropriate function c, unlike the

nknoptimal coefficients which depend on the entire sample T n *.

For a sequence of median sampling designs {T generated by the density
n

h we then have

n"-

l. c Y( = c YTm,n k1 n

2 = E(I-I )2.:.
em,n m ,n )2

=f f R1ff 2 n R c
f xi nl c 9T + c.Z YT T

n n n n n n

and by Lemma 2 in [4],

e = l im e2

M '00 n-w m,n

= f R x ff -2 chg + f I Ry(ch)(ch)

= f Rxff - 2 f R (ch)(f) + f f Ry(ch)(ch) (10)

= E ( f Xf - I Ych) 2

11.[..-..--.....- .. . .

" , ' - - . , m 'm 'n~f ---' ' . .. -' _t - • " " " • , ... : , • " - ', "_ " "- • 4r
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A reasonable way of choosing the weighting function c is by minimizing ,

2the limiting value of the mean square error em, . It follows from (10) that

e = r if and only if fYch = I or equivalently (by (iv) in the precedinq

subsection) if R = Ryxf has an L2 solution , in which case c is determined

by p

c(t)h(t) = ,(t), a < t < b. (11)

Also any smoothness requirements imposed on c, such as continuity (which has a]-

ready been assumed) or twice continuous differentiability (which will be required

shortly) would have to be satisfied as well by the L2 solution c to the Wiener-

Hopf integral equation. When Ry1 = RyXf does not have a continuous (resp. twice

continuously differentiable) or even an L2 solution p, then one can find a con-

tinuous (resp. twice continuously differentiable) c with corresponding mean square

er 2  ecdig2error e exceeding c by an arbitrarily small amount (and in the latter case

no minimizing L2 function c exists). This is because random variables of the

form fYy with q) continuous (resp. twice continuously differentiable) form a

dense set in the linear space of Y, so that given any 6>0 we can find a continu-
a 2

ous (resp. twice continuously differentiable) ip such that E(I- fy 2 2 6 and

choosing ch= qi we have

e E1/2 (fXf - fYp) 2

E/2 (fXf_ I) + E(I

We are thus lead to consider the following two cases.

Case 1. Ry=RyXf hasa twice continuously differentiable L2 solution .

Then c is chosen by (11) and

S, ................ . ... ° . . ... . ..

-3 . _' _' "# ". "# .- ,°"€ .- ".." ".", .. ¢ ¢ " " m" .,
°

- ,. ,° . ., ,% #, .. ,, -,,, .. , .. ' 2. . , ,
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n (tnk) (12)
m,n n k=l htn Y~tnk ,2

e2  2 ff R 2-- (Ry ) + n RyTem, n - kh.' n YJ RyT nhT n n !jTnYTn  Ijn

Assuming the observation process Y has no quadratic mean derivatives (k 0),

R satisfies the same regularity conditions required for (7), and /h is twice

continuously differentiable, we obtain from [4, p. 94],.

2 2 2 1 fb AY,O(t)p 2(t)n2(em, _ 2) n T12 a 2t dt (13),'.

mn n a hM

Thus choosing h*(t) proportional to [xy,o(t)i(t)] / we obtain a sequence

of median sampling designs {T*} whose corresponding estimators {Im n}are

asymptotically optimal. Comparing the asymptotically optimal sequence of

estimators using median sampling and nonoptimal coefficients with the asympto-

tically optimal sequence of estimators using regular sampling and optimal

coefficients, we see that in both cases the design is determined by the same

density h*(t), while the estimator coefficients require solving an inteqral

equation in the former case and inverting an nxn matrix in the latter.

Case 2. Ry :Ryxf has no twice continuously differentiable solution q.

In this case

2 e2  >E2

m,n m,0 0

with strict inequality for all choices of twice continuously differentiable c.

Thus the asymptotic performance is always inferior to that achieved by using

optimal coefficients. It turns out, however, that the rate of convergence of
2
emn can be found, while under the present conditions no rates are generally

known for optimal coefficient estimators.

% .%, , .. -. - , .C ,-. . .- -.- . .. .. . .. .. ,- . ... . - -. .. .-. . .- .... .. ." - . .- . -. , . . ' - - . - .' '
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To see this we write f

e2, 2, . YTn Tn -ff Ry(ch)(ch)}
emn em~ n n RJ c

(14)

-2{ 1 ci (Ryxf)T ff Ryx(Ch)(f)}
nn

Assuming as in Case 1 that Y has no quadratic mean derivative (k= 0), that c

and f/h are twice continuously differentiable, that R satisfies the same re-

gularity conditions required for (7), and that Ryx satisfies similar regularity

conditions, we show in Appendix A that

n2(e2 e2 12 cf +Pf- hn (emn- emo n l -YX f + )cYXf-Ach] (13)

where

ayx(t) = [R O(t-,t) - Ry x (t+,t)] - ER .-(t~t) -

Ay(t) = h-l(b)bb)bR'O t -- la)[c'(a)Ry Y(a,t)+c(a)RYO(a,t), _

and Ayx likewise with Ry replaced by Ryx. It should be noticed that yx(t) E

when X and Y are jointly stationary, as well as when Ryx(t,s) is a symmetric

function of t and s; the latter is the case when Y= X, or Y= X+ independent noise

(see Section III.A), or even when Y is a zero-memory nonlinear transformation of

X (see Section III.C) possibly plus independent noise (see Section III.B).

As has been pointed out in the paragraph following Eq. (10), in this

case the estimator weights c(t) should be chosen in such a way that the resulting

asymptotic mean square error em, of (10) whould be close to its minimum value

2
. This is the primary consideration in choosing c, and any further considera-

tions such as those resulting from the form of the asymptotic constant in (15)

are only of secondary importance. Since the asymptotic constant in (15) is not

necessarily positive, some choices of c may produce a negative value indicating

. . • . . . . . . . . . o. • ° . . . .. . . . -. o•. . . • . . . .. . . .- - •-°- - - - • - - , , ° ,
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that for sufficiently large n the performance would be at least as good as e 2

whose value would perhaps be appreciably larger than its minimum. Also judicious

choices of c may exist which render the asymptotic constant in (15) equal to

zero, indicating a faster rate of convergence which is not currently known.

However, the dependence of AyAyx on the boundary values of c and c' complicates

the question of existence of such c's, and more significantly, even though one

can derive the general form of such choices of c, it does not seem feasible to

determine how close the resulting asymptotic mean square error em can be to

2its minimum c . We therefore do not pursue this matter any further. Incidentally,

the estimator weight which minimizes the asymptotic constant in (15) is given by

c(t)h(t) {yx(t)f(t) + Ay(t)h2 (t)} c~~~) 2Cy ,(t) YX-"

for a <t <b, with appropriately deteriined values of c(a),c(b),c'(a),c'(b) via a

system of four linear equations resulting from the dependence of AyAyx on

these, and with corresponding minimum value of the asymptotic constant in (15)

l (1 1 f 2 14 fcy 0 ~ - + Ah) + - Ayx"h.

Recall that in the noiseless case Y=X, we have p=f and the appropriate

choice of c is, by (11), ch=f. It is therefore of interest to determine the

best constant multiple of f as a possible value of ch. Thus putting

c(t)h(t) = f(t) , a t h, (If)

in the expression (10) of e2  we find that the value of which minimizes
m'0o 2

the asymptotic mean square error e 2  is
Me'CO

fRyxff
,R (17)

• .. o .- •. . . .- ° - . .° -. ., . . ... °° .. , * . . .- ° "*°. . . .- ... .*, , ,. •. .- .- °

. . . . . . .. . . . . . . . . . . . f f
. . . . . . . . . . . . .. . . . . . ..Y.S
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with resulting estimator in this case of no quadratic mean derivative

_ n f(tlk)
nmn n k!) Y(tnk) (18)

m, = n-ki h I k

minimum asymptotic mean square error value

2 (f rR yxff) 2

em  = ffRxff - (19)
' X ff Ryff

and asymptotics

n2 n2 2 f
n(em n-em, ) A 1 4xJ(xQy0 _Yh+ .(AyxXAy)f}" (20)

The estimator (18) has the advantages of being generally applicable

and fairly nonparametric, in that it depends on the correlation functions only

via the integrals in (17). In sharp contrast, the estimator (12) requires the

solution of the integral equation and thus fairly detailed knowledge of the

correlation functions, and so does of course the optimal coefficients estimator.

Thus the estimator (18) is more robust with respect to inaccuracies in our

knowledge of the required correlation functions than the other two estimators.

It can be used for its simplicity and robustness, instead of the estimator (12),

even when the inteoral equation has a twice continuously differentiable solution.

i.e. in Case 1, and in this case one would want to know how much nerformance is

is lost asymptotically because the limiting mean square error e', of (19) exceeds

S, i.e. one would want to compute

e2  - £2 - Ryff fRyf - (ff Ryff)2

ff Ryff ( ff Rxff - ff Ryxf W

Y X Y
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Observation process with rational spectral density

When the observation process Y is stationary and has rational spectral

density, the integral equation (5) or (9) has a solution which contains

delta functions and their derivatives at the endpoints of the observation

interval [8,Ch. III, Sect. 7]. In particular, when Y has no quadratic mean

derivatives (k=O) then the solution contains only delta functions so that

b
g(t) -- Ry(t-U)o(u)du + AR (t-a) + BRy(t-b)

a

where 0 is a continuous function [8]. In this case Sacks and Ylvisaker [9]

show that their asymptotic result is still valid with %O playing the role of

b 2
n 2( 2 2 cY,0  b (1r,n - co) - -. 2- a h (21) ,

r~n - a h

It is also straightforward to check that if we adjust the simple coefficients

estimator using median sampling designs {T nI by adjoining the endpoints with

appropriate weights and if we choose c(t) from c(t)h(t) (t):

I n2Otn-2'k) Yt_, )  (2Im,n = AY(a) + BY(b) + n-2 =I (tn_2,k -2k) (22)

I -2k=l h(t n-2k)

(n>2). its mean square error e2  E(I-I satisfies
m,n m,n

22 2 YO 0 (3
n(emn -0) - 2 fa ' (23)

i.e., it converges to C 2 (rather than to the larger em and with the same rate

2as r,n' provided qg/h is twice continuously differentiable. Thus in this case

r n......p . .. .
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the modified simple coefficient estimator using median sampling is asymptotically

optimal.

In closing we should note that while the assumption of rational spectral Ile

density is frequently reasonable, such as when the observation is signal plus

noise, there are important cases where it is unlikely to be satisfied, such as

those considered in Parts B and C of Section III.

%'

,,

m"q"
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III. SPECIAL CASES AND EXAMPLES

In this section we consider several special cases of noisy observations

of interest.

A. Independent Signal plus Noise

Suppose that Y(t) = X(t) + N(t), a < t < b, where the noise process N is

independent of the signal X and has zero mean. In this case Ryx = Rx and

R= RX + RN. We consider in more detail the following two special cases.

Gauss-Markov Signal and Noise

Suppose we desire to estimate the average of a Gauss-Markov signal over

the unit interval, when observed in additive independent Gauss-Markov noise,

i.e.,
h_

=2
Rx(T) = X exp[-axITI]

RN(T) = aN exp [-aNI-u]

f(t) = 1, 0 < t < 1.

In this case

1 o2  -axt -ax(1-t)
g(t) = Rx(t-u) du aX (2 -e X-e

0 Xa X  
.

0 < t <1 . When ax X aN the integral equation (5) has a solution ¢ containing

delta functions:

¢(t) : Co(t) + M {5(t) + 6(t-l)}, (24)

-.

% % %% %~§
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where

O = M1 + M2 {exp[-xt] + exp[-ct(l-t)]} (25)

and the values of the constants M, M1, M2, and ct>O are iven in Appendix S.

The optimal mean square estimation error is computed from (3),

2 = 2 whereH9gHR(Ry) , hr

2 11 2 2  -a A2J f Rx(t-u)dt du = (2ax/ax)(e -l+ax) = rX

2 .I..

and II9IR(Ry) g(t),(t)dt is easily calculated.

This optimal error c is the limiting (large sample size) value of the mean

square estimation error when using optimal coefficients and regular sampling,

cf. (21), or the adjusted simple coefficient estimator of (22) and median

sampling, cf. (23). When using median sampling with the nonadjusted simple

coefficient estimator (18) with the optimal constant X of (17), the limiting

value of the mean square estimation error of (19) is given in this case by
22

r + r XrN

and the optimal scaling constant by X = r2 / (r2 + r 2). Asymptotically,

the loss of performance by using the nonadjusted versus the adjusted simple

coefficient estimator can be measured by the ratio lO0(e2  - 2 2e m, - /& which

is plotted in Figure 1 for a range of parameter values. It is surprising

that over a very large range of parameter values this ratio does not exceed

nine percent, indicating only a moderate loss of performance when the simple

coefficient median sampling scheme is not adjusted by including the interval

! ,

*r C'-. C C r. ~ -. -~ t
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endpoints with appropriate weights. Only as aN/aX approaches zero the loss

of performance becomes large, indicating a substantially improved performance

of the adjusted scheme.

In Figure 2 we show how the asymptotic mean square error decreases

with increasing sample size n in the following cases by plotting the corre-

sponding asymptotic expression of the mean square error:

(a) no noise, uniform sampling, optimal or simple coefficient estimator:

10 loglo {(ax/6)n- 2} (with dash-dot line) (26)

(b) noise present, uniform sampling, optimal or adjusted simple coefficient

estimator (cf. (21) and (23)):

10 log10  2 + f{ (aX + aN)f 2} n- } (with solid line), (27)

(c) noise present, optimal estimator with optimal regular sampling, or

simpler coefficient estimator with optimal median sampling (cf. (21) and

(23) with optimal h* proportional to 1I012/3):

10 lOqlo { + {i(ax  aN)(HO 2/ 3  -}n2} (with solid line),

(d) noise present, uniform sampling, nonadjusted simple coefficient estimator

(cf. (20))

2 -2
10 loglo {em + Cn- } (with dotted line),

where -a -aN

C {x(ax+a0) - (1-A)G2(2 -e X) + Xoa(l -e -a .

.-- " "

,...- ,- . ..,-.,...-_,- ,., ,, ;. -,.-".L'',' . , .. ".. "-. .'. °'/"-", ". " •-' .'o'.",'. -.' .' -. "L," "-"',"I,

-# .-.d'.-d'.-,'.W ........................................................................................................... . -. . . " .
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As it turns out, the constant term M of is much larger than the M2

term for the values of the parameters we plotted. Hence 0 is nearly always

flat and the optimal sampling density h* in (c) is nearly uniform, i.e.

(fjNO2/3)3 nearly equals f, , and in our plots cases (b) and (c) were apparently

identical. Note also that the expressions we plotted for 
n=2 to 21 are

asymptotic values valid only for large n (typically n > 5). In Figure 3 we give

some plots of the actual mean square error for n 2 ton = 12, for the case of
2 2
2 ~ =a = I and aN= 2 . In this figure we also plot one of the asymptotic

curves (the (b) curve of the previous set) in order to compare with the actual

values. As can be seen, the actual and asymptotic values are very close even

for n=5.

It is of interest to know how many samples are required asymptotically

V. attain a given performance, say for error (1 + 2)F . When no noise is 5,

present and uniform sampling is used with optimal or simpler coefficient

estimator, expression (26) gives

2 ax
nNNU 6(1 + )2

With noise present and uniform sampling with optimal or adjusted simpler

coefficient estimator, expression (27) gives

n2 a x + a N t
22 0

nNU 6B C

nN,U
,he ratio

n {(I + ax/aN) (0 + 1) 2 1I/2

nNN,U

summarizes the effect of noise upon the necessary sampling rate. We have

plotted this ratio in Figure 4 for some representative values of the

parameters. Again as aN/aX approaches zero the effect of noise becomes jcich

more marked.

l .,,",=., ,-- -,., , .- , ';'-' .-... ' ,-.' ' .' .'-" . "." - ,- .".","- - ."." - ." -; "". . "- -. '.- -.-. " '''..-.'' .- ' '- -

i . * -,r ":., ,.c'.;..z':,;.;-.'..', . -' -','. -,. ... ' ,- .- , " "-v " "-"." " "--','"-'. .',. .- ".-.'-..-. ... '-.".. . .-.. . .".. ."-.. .". .. '-



21

Proportional Signal and Noise Correlations

We now consider the case where RN yRX for some positive constant y.

1In this case Ry (1 + y)RX and g s Rxf (1 + y) Ryf so that the integral

equation always has a continuous solution ,: (1 +y)- f. !e also have ay, 0 =

(1 + y)ax 0 and

£ =ff Rxff - R Ry- ffR ff y
1 +y

so that
22

22 2 ax,0 A A
Ir2n + a) + Y) h 1 + y

and similarly for e 2  rrovided f/h is twice continuously differentiable. rhusmn,n' '.

the asymptotically optimal sampling density h* is proportional to (ax, f and

thus independent of the noise (i.e of y). For lar.e sainle size n, both C n
rn

n are approximately equal to

2 A 
2

1 2 2) (28)
(+yc n

In Fiqure 5 we have plotted this expression for Gauss-Markov signal

with 12 = 1, aX = 1, for f=l (average of process) and h=l (uniform sampling),22 1 1 -tu

and ax,0 = 2a = 2, hence A2 : 1/6, o = 1'fo e dtdu = 2/e. The expression

is plotted as a function of n (= 1-20) and parametrized by y with

(a) y (circles)

) y - 2 (squares)

(C) y = 1 (pluses)

(d) y = .5 (stars)

(e) y = 0 (no noise) (lines)

S- .- . . . .. . . . .
. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . ...- . .
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As in the previous case it is of interest to know how many samples are
2

needed asymptotically to achieve a certain mean square error c 2

Y( + A-102 < £2 < 12 It follows from the asymptotic expression (28) of

the mean square error that

2A 2
n2(y) := :

C 2 ( 2  _ 2)

and with no noise present

2 A2n2(0) -.

£2

The ratio

n( y)
nTOT ( 2 _ 2)}1/2

increases with y from 1 to infinity as y approaches C2/((32 - £2). The first

order (linear) approximations in y are for the weak noise case, i.e. y 0,

n(y) 1+ o

*and for the comparable noise and signal case, i.e. y 1,
2B 2

n .2 C .Y- 1 02,

1O2£ - 2  
2 2 a

1%-

i-,,>,"-'. >'i-" > "':.->% i i . .-..-. .-. . .. .. .. .. .-...-.... . . .-- i

.'..' -" , .. . , - ' " .., . ., .- " ." . . " • - - . .. .' . . .. .. , .. .- . . . . . . . ". , . ... . . -
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B. Nonlinear Distortion plus Noise.

Suppose that the signal X(t) has suffered some nonlinear distortion,

in addition to being corrupted by noise, i.e. that the observation process

Y(t) is of the form

Y(t) A(X't)) + N(t)

where X(t) is stationary and Gaussian with mean zero, A(.) is a memoryless

nonlinearity such that EA2(X(O)) < -, and N(t) is an independent, zero-mean,

wide sense stationary noise. Then Y(t) is wide sense stationary and,

assuming for simplicity that Rx(0) = 1, we can write

2
(T) = 0  a R(T) + RN(T)

Y k=O k'

where ak = E[A(X(t)) Hk(X(t))] and {Hk(X)}k are the Hermite polynomials.

Also, by the cross-covariance property, we have

RYX(T) = d Rx(T)

where d = E[A(X(t))X(t)] (see [1]). Therefore g Ryxf d Rxf = ds and

2 = 2 d2 Isl

It should be noted that if A is an even function then d=O and Ryx=O,
i.e. the observation process Y is orthogonal to the signal process X, and

thus no linear estimate based on Y is better that zero as an estimate of the

integral of X. We therefore assume throughout that A is such that d$O

(e.g. an odd function).

When optimal estimator coefficients and regular sampling are used,

the asymptotics are determined by (7) with rate of convergence 1/n2,

• , ,'0

"0

, -+ .. ----.- , -.- ... .. . ... ..--- -.. -. -+- , . . ..- ---..." " •- .-' -' ' -'. -.- ....- ..' . .i " . " + " " ..-, .............m " +"" % "" ' " """ ',' " -' . -- +"-............. - ' ' '"
..... "°' - ''- ,,, ,
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provided the integral equation RyP = d Rxf has a continuous solution

, and Ry(T) has the needed differentiability properties, i.e. a finite

positive jump -dy,0  in its derivative at zero. When the simple estimator

coefficients and median sampling are used then the rate of convergence is

1/n2 provided Ry(T) has the needed differentiability properties, and the

precise asymptotics are determined by (13) when the integral equation

. RyP = dRxf has a twice continuously differentiable solution @ and the estimator

(12) is used, and by (20) when the estimator (18) is used.

Smooth Limiters. As an example, let us consider the so-called smooth l imiters
X

A V(x) 2K e-z2/2v2 dz
X v 0

for which

2Kh7 (1 + v1 )

Ry R- 2 sin R) + R
= -IT+ V2 N T

It is easily seen that if RX and RN have the needed differentiability pro-

perties to define aX,O and aN,0 then so does Ry, provided v > 0, and in fact

2K 2 x,

0t = x, + aN,O

7 /v(v + 2)

Also t = d ot Thus, provided v > 0, the rates of convergence remain

l/n2, as in the absence of nonlinear distortion.

:lard Limiter. The case of a hard limiter

A(x) = K sgn(x) Ao(x)

'..''.'''..-'' .'''::-.-'' .'''- ".- .- .-- . ." .": ."."." .- " . ." - -''''-'.. ".' - .. .-.-. '"-.-. -' -i..- -- '  .- '- -
I:. ''-','" 2',J'."i.'--"5,'-,, "i.-;"?-';.";-3 '2,.."'";'"-;- "-;'", -";-;'" "2 ".. . . . . . . . .. .- ".. ."-..-'. ."-.. . .,.. .".".. . . . . . . . .".. . . . . . . .' >
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requires special attention since, assuming R and R have the needed
X N

differentiability properties to define aX,0 and aN,O' it follows that

cc = + indicating a rate of convergence slower than 1/n2 . This is because

Ry(T) = ?K  sin-I(Rx(T)) + RN(T)

implies Rv(0-) = + , Rv(0+) = --. While the first derivatives of R at 0+

are not finite, we notice that the "one-half derivatives" are. Indeed we have

(/2) Ry(0) - R YR/2)0-) A lim -

Tto (-T)

' RX(T)
[l- R T] I 2

= 2 [ R 2 - j1
-2K lim .

T+0  l ( )-1/2

2  2 Rx(T) y". - 2K2lim :

T0 1 - ) I R ()

-T [1+ Rx(T)]

- 2K2  2 Rj(O-) 2K2  1/2
T {2R (0_)} 1/2 = -i-- {2R' (0-)J,

-_2K 2  1 /2
7Tt X,0

Similarly

)(0+) R(T) - Ry(0) 2K2  '/2

Rlim I- 1 r X,
T+0 T

and thus
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t R( 1/2) (0- (1/2)) 4k 2  '/
Y,1/2 - Tr O X,0

The expression (14) for the mean square error when the simpler coefficients

are used becomes in this case:

e2 2
m'n m : C R Y'TRCT - HfRy(ch)(ch)}

emnn ne~ ~ n n-

-2d{- cT (RXf)T - ff Rx(ch)(f)} (29)
n n fTn

6 (Ist term) - 2d (2nd term). i2

For the second term we have as in (15) (cf. Eq. ( )), n2(2nd term) finite

constant, provided c and f/h are twice continuously differentiable. The rate

of convergence of the first term can hP found in a similar way. Instead of

using, say for r> 0, Ry(r) Ry(0) +Ry(O+) + O(T) we now use

(/2)
R y(T) = Ry(0) + v1- R I2(0+) + o(vr) (and similarly for T < 0).

It is shown in Appendix C that, provided c and h are twice continuously differ-

entiable, and RXRN have finite one-sided second derivatives at 0, we have

3/2 2ch
n/(st term) - yh (30a)

where

3 5 1(- 6 ( ) .21225 (30b) "

and C(3/2) = k-3 /2  2.612 is Riemann's zeta function evaluated at 3/2. Thek= 1
first term in (29) is thus the dominant one, and in this case of signal and

noise with no quadratic mean derivative we have

3 / 2 ( 2 2 , = 2 /

em,n - m Y y 1 2 f . ..

hU~..1A ~ .. ~ '
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Hard limiting thus reduces the rate of convergence by a one half power to 1/n3 / 2

from the rate of 1/n2 of soft limiting or no nonlinear distortion. If ch is

chosen proportional to f, then the sampling density h* which minimizes the

asymptotic constant is proportional to jf1 4/5

del

.°

'~ .,
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C. Quantization

In applications one frequently has access only to quantized data. Here

we assume that our observation process is

Y(t) = O(X(t)) A QX(t)

where 0 in an N-level quantizer with Q(x) = Yk when xk < x < Xk+l where

- = X <y < x2 
< Y2 < < XN < YN < XN+l : +- and x= Yk + )k1/2 for

k=2,...,N. The process X(t) is stationary and Gaussian with mean zero and

variance one. (More generally X(t) can be taken any wide sense stationary

process whose bivariate densities have a diagonal expansion, so that the cross- .1

covariance property holds - see [1]).

Optimal Coefficients

We first consider the case where the optimal coefficients estimate based on

the quantized samples is used:

Q, = CTQXT =g,T R  ,TQXT'

where gQ=RQ xf=dQRxf =dQg, g R f, d9 = E[QX(t)X(t)]. Denoting as usual by

IT the optimal coefficients estimate based on the samples XT: IT=CXT =g'Rx X'

we can write the mean square error as

22
QT = E(I - IQT) 2

= E(I - IT) + E(IT- Q,T + 2E[(I- IT)(IT - O,T) ]

The third term vanishes as E[(I - IT)IT] = 0, since IT is the projection of I

onto the linear span of XT9 and, by the cross-covariance property,

E[(I - 'T)IQ,T] = E[(fXf - CTXT) cQ,TQXT]

~~~~~~~..... €._,.., ....... .. .-. ,- - . .-- " ",• -•," - ", ', .
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: CQ,T,k{EX t)X(tk))]f(t)dt - cTqjE[X(tj)QX(tk)]}
k

= dQ ICQ,T,k{fE[X(t)X(tk)]f(t)dt - ICT jE[X(tj)X(tk)]}
k3

= dQE[(I- I T)c6,TXT] = 0.

Thus the mean square error decomposes into two components:
2 T2 ^ 2 A 2 e2

Q,T = E(I- IT) + E(IT - IQ,T = ET +  Q,T

The first term is due to sampling and has been discussed in Section II; its ex-
2 2

pression is F_ = a2 - 11P gIRRx). The second term is due to quantization of the
x

samples used to estimate the integral, and is given by

2 =E'' R 1 X - 1  Q)2

2 -
= g R TgT - OQgTQX,TgT

2 I~I R d J 2  2
11 P 1 ( IPTg  IR(R~x

where the cross-covariance property has been used. Thus when using a regular se-
quence {T } of sampling designs we have

n

2 2 d2  l 2  2 2  2  2
Qr,n -dQ11 P Tng 11RQX) n - d glR(R Qx) =Q,."

". (That gE R(RQx) follows from dQg= gQE R(RQx), cf. statement preceding Eq. (3)).

It follows that

2 C2 d 2)1
CQ,r,n Q,= Q Tg11 (RQx)

and the conjecture here is that, as in the case of hard limiter, its rate of

convergence to zero is n-3/2, when X has no quadratic mean derivative (k 0)

- "

- -5-..
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and the derivative of R has positive jump a at the origin, and where

RQXP R xf has a continuous solution p (but no proof is currently available).

Simple Coefficients

Next we consider the case where the simple coefficients are used along

with a sequence of median sampling designs generated by the sampling density hS .

The resulting estimate is

Ir,Q, n - -c(tn,k)QX(tn,k)

with

2 = E(I - I )2m,Q,n m,Q,n

2 ,(RXf)ff R Rff - n T( 'f)n+] C n ROXTCT

,, n. +' cT ROXTTn n n n n n

ff Rxff - 2ff RQXX(f)(chs) + ff ROX (chs) (ch s )
n

E[ J, Xf _ / (QX)(chs)] 2 A e2 (31)

by [4, Lemma 2]. The asymptotic error eQ- is minimized for some ch if and

only if the projection of I=fXf onto the span of QX is of the form fQX- for
some E L2 ( in which case then chs = ), or equivalently if and only if there

. is an L2 solution p to the integral equation dQ*Rxf=RQxP. From (31) it is
2 2 Q

clear that as N -- , eQ - E[fX(f-chs)]2. Thus asymptotically for large
QN'co

number N of levels of quantization, the best choice for c and is

c(t)h(t) f(t) , a < t < b. (32)

.l

Throughout the rest of this subsection we assume this to be the case, so that

2 2
eo E [ f (X - QX)f ] 2 ff Rxoxff.

Under this assumption the mean square error is again, at leastr --
'"C " " :' " " " """ .'- d. . . . . . . . .." "'" .*.. '.-C..*; ""*... * -. "" '- , .'.'.-..'-'..-.'."...."."-" ." .. .",".
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asymptotically as the number of samples n tends to infinity, the sum of a

mean square error due only to sampling and of one due to the quantization

of the samples. Indeed with

1m,n =1 C(tnk) X(tn,k)

we obtain

e2  =E(I - 1 2 + E(I - 2 + 2E [(I I )(I - I )] (33)
m,Q,n m,n m,n m,Q,n mn m,n m,Q,n

By the cross-covariance property,

E[(I - Imn) Im,Q,n] = d0E[(I - Imn) Im,n]

and

E[(I Im n)Imn] = c n(RXf)T C RX,TCT
m~nm~ n n XTn n n n n

ff Rx(f) (chs) - fI R x (chs ) (chS)

= 0,

by (32). Thus the cross term in (33) tends to 0 with n.

2 2
We now study the rate of convergence of emQn to e as n-o, assuming

m " Q

that Rx has finite one-sided derivatives at 0 required for the definition of

O" As in Section II.B, we have

e2 -e 2  fR - 2d1 c (Rf + c' R C
emQn 0 fxf dQ n. (XJT QT X,T cTn n n n n n

-ff(R - 2dQR + RX) ff
X Q X+OX~f

2 { T 0XT C - ff Roxff}n2 CnRO n C n

-2d {l C (RXf) -f Rff}
" - . Tn nT "
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- (1st term)- 2dQ(2nd term).

Assuming that f,h,f/h are twice continuously differentiable, we have for the

second term as in (15) (cf. Eq. (51)), n 2(2nd term) - finite constant. It is

shown in Appendix D that

aQX,I/2 a2, Tr)1/2 (34a)

where
N 2 1-Yyk12

BQ I k (yk- yk1 ) 2e-/(Yk+Ykl , (34b)

and that as T 0,

Ti 1 /2 R1(u (35)

This case generalizes the hard limiter case considered in Section II.B. In

fact an inspection of the proof of (30) in Appendix C, shows that the relation- -

ship between X and Y affects the asynitotics described by (30) only via vl/2

and 54(b), which is identical with (35) above. It then follows from Appendix C,

or (30), that provided Rx has finite one-sided second derivatives at 0, tie have
S.

.%.

32 f.

n 12(Ist term) yaoQX, 12  f

with y given in (30b). We thus have .'.

n /(e m9,- e,) y(2a ,/Tr) /B _L (36)

Quantization therefore reduces the rate of convergence by a one-half power to

n-3/2, independently of the number of quantization levels; and the optimal

sampling density h*, which minimizes the right hand side, is proportional to

% .

. . .-I, , .. .. ,l..m,.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..m m •
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It is very fortunate that in (36) the effects of quantization and of

sampling are coupled in a rather simple way. For large n:

22 1 /21 f 2
e e + 3 QY(2X ,/) f2 (37)
m,O,n Q,c :3 2 Q XO h

s

This can be used to study the interplay between the number N of quantization

levels and the number n of samples used, asymptotically as N and n tend to

infinity. Suppose that a "regular" sequence of quantizers {QN1 based on a

continuous density h is used, i.e. the levels YN,1 ' YN,2 o'f YN,N Of

quantizer QN are, respectively, the 1/(2N), 3/(2N), ... , (2N - 1)/(2N)

quantiles of h With p(x) denoting the standard normal density of X(t),

1/3choosing hQ proportional to [p(x)] I , i.e.

x2

h*(x) - e < - x<%,

we obtain an asymptotically optimal sequence of quantizers. As in [3], with

YN,kf hrQ(x) dx h h(zN K(yhQ(X) Q dx:h N, K) ( N , k -YN,k-I ) I

YN,k-1

for some YNk-I < ZNk < Y we obtain (assuming ph is Riemannintegrable

over
N -8 (YN,k -YN,k-1 ) 2

1 2
NA N --Tr k 2 (YN,k YN,k-I )

hQ(Znk)

1 2 

4. 1 f e dx 0 P-(X)T dx

N V27 - hQ(X) Q

When h* is used the asymptotic constant becomes
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~o
P 3

-h h*

Thus for large N, .-

~BON- N
N hQ

e2

The precise rate of convergence to zero of e seems harder to determine.

-2
However we have the following bound, assuming / phQ < .

e '2 E { a[X(t) - QNX(t)] f(t) dt } 2

b
= ~ TaE[X(t) - QNX(t)] [X(s) - QNX(s)] f(t) f(s) dt ds

< E[X(t) - 2 (b IfI) 2
< EQN(Xt-)Q WWIN a

and by [3],

N2 2  < N2E[X(t) - Q (X(t))] ( 2
QN,0 -

N l -- O h a f •"-

Again, when h* is used we have
Q

p(x) dx=:6/ m

-00 [h* (x)]2

Q

Thus for large N,

2 1 1 ( fp f 12 39
Q,

... .. '-.." .'....'... .. ". '-

.*? '~?.'. .*.N

AP ,. F- le-
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From (37), (38) and (39) we see that for large N and n

e < - 1{ - -(IfI) 2  + { 2s-
N hNn h/

=C + D (40)

N N n

The bound (40) can be used to determine the allocation to quantization levels

N and sample size n to achieve mean square error not exceeding a desirable

value For instance if we choose N = n the required numbers of quanti-
1/2 -1 1/3-2/3"

zation levels and samples are N = (C + D) c , n = (C + D) . Also the

more interesting problem of minimizing the total number of samples N + n (or

some other function of N and n reflecting quantization and sampling costs)

subject to mean square error not exceeding a desirable value 62 can be solved

(numerically - analytic expressions being hard to obtain).

I.

p.,,

,J

I.

,.

. • ... . . , °° , . °' -. - ' .o • . .....- .° .-.. . "°. . -. -- . ° . . -. -. -"- .-- - ". . . -,°
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APPENDIX

A. Proof of (15)

Here we find the rate of convergence and the corresponding asymptotic

constants of the two terms on the right hand side of (14). These results cor-

rect (and in fact the second also extends) the statements in [4] displayed be-

tween Eqs. (3.36) and (3.37); the final result (3.37) in [4] remains correct.

For simplicity of exposition throughout the following we do not display the

terms of higher order and we use to indicate equality up to higher order

terms.

Sampling points and subdivision points

The sampling points tn,k are determined by fankh = (k- '/2)/n, k= n.

Introduce the interval subdivision points sn+lk by h  (k- 1)/n,

k n+l, so that each t is the median of (sn+l,k sn+lk+l
) with re-

spect to h. For notational simplicity we drop the subscript n from tn, k and

n+l from sn+l,k

By the mean value theorem

S k+l

n : sfh=h (w k)(Sk+l - k, (41a)
tk

1_Ih= t k  (41b)

2n f h = h(ak)(tk - ,sk

1 
kk+l

1-n f h = h(bk)Xsk+ - tk (41c)

tk

where sk <Wk<Sk+, k <ak <tk <bk <k+l It follows that as n-oo,

tk-Sk _ 1 h(wk) 1Sk+ -s ~k )  (42)

k+l k Mha)2

%-

................... . . . . . . . . . ..i'-,- '.".',"'"- -."."-"-","."-"' - " " ' .--".,-, ' . -.,,-.. . . ....-.-.--.. " - . -
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so that asymptotically as n-, t kis the midpoint of (s ,~'s )k We will need

the order of magnitude of the difference of the two pieces

D k =(s k+l -t k) - (tk -s k).

Substituting h(u) = h(t k) + (u - tk)hi(int. pt.) under the integral in (41b) and

(41c), using the mean value theorem and subtracting the resulting expressions

we obtain
= 1 h '(b') h a') (3

k htk h (bk) h(k

* The first term

We first consider the first term on the right hand side of (14), which

can be written as follows with K(u,v)= c(u)R (u~v)c(v), a symmetric function,

Al b
1st term = c(t k)R Y(tkV t.)c(t. - ff Ry(u~v)ch(u)ch(v)dudv

n k~J a

= k+1 Sj+l

X f f [K(tk t)- K(u,v)]h(u)h(v)dudv = I
k~j 5k s h~j

The integral over each diagonal square is split into the following six

regions, and by symmetry it suffices to consider only regions 1,2 and 3.

5k+l

k k
kk

*~~~ k

/ '1 2

kk r k P-7

k k k+l

s. . .



38

We use the Taylor expansion of the integrand:

K(tkstK) - K(uv) K(tktK) - K(tk,v)- (u- tk)K 0(xk,v)

=-(v- tk)K'l (tk,yk) - (u - tk)K ' 3(xkv)

where x k is between u and tk , and Yk is between v and tk . Over each region

both u-tk and v-tk have constant sign so the mean value theorem is applica-

ble. For region 1 we have

ff = KOl(ak,bk)h(ak)h(bk)fW - (v-tk)dudv
I k  1

+ K1 ' O(a b h~) bk)ff - (u- tk)dudv
1Ik

1 1 1 03
{ 'l(ak,bk)h(ak)h(bk) + K 'O(a ,b)h(a)h(b)}(tk-Sk)3

where the points (akbk) and (a ,b ) belong to Ik . Using (41a) and (42) we

obtain

,n h(a)h(b ) tk -Sk ,3(,n 2 ff = { (KO bk h(ak)h(bk) + Kl ,O(a',k h2(Wk) tk-k(w)6k1k kl-
k 1 k(kk'bk) h 2  +w k) , h2 (w k+l Sk) tk+l - sk )

b 1 10
24 (t,t-) + 48K'(t+,t)}dt.

nl a 4

A similar argument gives

n2  b 1 1 1 0  t

k 2k a
b

n2 Z SS - ff { 8KO'(t,t)- 2t 4Kl'O(t+,t)}dt.
k 3k na 4

........................... ,..........ft.. ° .o ° . , . .,° V-. ° °- . .. . . - . -. .• . -. - . . -. . . - -° ., o . ° .. -°
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Putting these together, and using the symmetry of K, we have for the diagonal

terms 2i1b 0i 11b 2

n2Zk k Y fjf{KO'l(t,t-)- K ' (t,t+)}dt : yl o(t)c2(t)dt. (44)
k' a a

Over each nondiagonal rectangle k j, K has continuous partial deriva-

tives. Thus Taylor expanding K and retaining only the lowest degree terms

we obtain

S k+l S+lIk~j: [ --]-KP'qpq (tk tj) f (u -tkPv -tj h(u)h(v)dudv".

O<o+q<2 k s j

where in fact the term with p=1 = q is of higher order. Using "

h(u):h(tk)+(u- tk)h '(int. pt.) and (43) we find
F-

k k f12
k  - s +)-+z1h

k hk) h (ak) ha k n

1 h (tk) (45) "5

2 ( sk+l sk)..'
h (t) n-k

where sk< Tk< Sk+l and likewise

A k+l 2 1h(t k)1 (- 1Bk - k (u - tk) h(u)du ( 2 kSk+l -S = 12 S k

skh (a k) n h~kkl n
(46) -

It then follows (usinn (41a)) that (46)

1  h'(tk) 0,1 1 h'(t.)
Ik,j -- {K'(tkt)(- L h(w.) + K (tk,t.)h(Wk)(- - t

h (t) ht.1
k1

+ 2,0 1 0  2(t 1 (S S)(s s

2 (k 'tl 2 h(t ) j 2 (k tj )h ( k)2 h(t )1( k+l - k )(s -
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and thus by the symmetry of K,

n 2 1kj,l fJ{K h(t)h'(s) - KO,2 h(t) } dtds
k j  ' Kt tsSk~j t4 h2s

-l- fdt h (t ( b d s Kj Olft's]

= a a t ds hs

01b h(tb) K' (ta)
l- f[K O  (tt-) - KO 'l (t't+)]dt - b2 hb h(a) h(t)dt

a a

- yoc2 - -1'2fAych (47)

where A is defined following Eq. (15).

Finally adding (44) and (47) we obtain

1 2 1
n2[lst term] -2 fIAych. (48)

The second term

We now consider the second term in (14):
l b b

2nd term c(tk)fRyX(tk,v)f(v)dv - ff Ryx(u,v)ch(u)f(u)dvk a " - a

k+l Sj+l

I f f [M(tkv) -M(u,v)]h(u)h(v)dudv
k,j sk sj

kjJk,j

where M(u,v)= c(u)Ryx(u,v)f(v)/h(v) is a generally nonsymmetric function.

The integral J k,k over each diagonal square is split into the six regions

1k to 6k. Over region 1k' using the Taylor expansion 1(tk,V) -M(u,v) =

-(u-tk)Mio (xk,V), sk<v<Xk<tk, and the mean value theorem we obtain

4...- - - - -5..-5,

• ,_ .,- .o-. .-/ . .. -, -.- ,.--,--. .. .. .- .- ,- ..-, 5 . . .. .... -. . . .. . .. -. . . . .S . .-S . .. . .
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ff = M'lo(aksbk)h(ak)h(bk)ff - (u-tk)dudv

= M1 0 (ak,bk)h(ak)h(bk)(tk S )

where sk<bk < ak<tk, and thus by (41b) and (42),

n n2 Xft 1 M1 0 (a h(bk) tkSk (s 
k4 k k'bk)h--k Sk+lSk k+l

1 bM1 ,f0~4
n 419 JMl (t+ ,t )dt "

a

A similar argument gives

b.~
n 1 rMI ,O(t+,t)dt,k2 n 16a

k 

n I_ ffMl,(t_,t)dt,
n f 48 f'I

k 4k a

2 bn" I f ' t-,t)dt.
kZ ff n 16 a 1 O

ka

The integrals over regions 3k and 6 are slightly more complex. For region

3k we use the Taylor expansion

,, ,(tkv) -M(u,v) = M(tk,t) + (v - tk)[M O ' (t
k )  (UXk)] M,

= -(u - t k )M 1O (yk'tk ) + (v - tk)[MOl (tk,xk) -Mo'l (u,xk)],

where tk <XkYku<Xk+l and applying similarly the mean value theorem we obtain

n2 b 1,0 1 Ol(t,t+)MOl(t,t-)]dt.
k 3k a

k.
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Likewise

n I b 1 1  101M tt--A.[ (t~t-)- M I (t,t+)]}dt.
k 6 k a 4

Finally putting all six pieces together we have for the diagonal terms

n2~~J 1k 1 0 1tt)- n1 (tt+)'Idt. 0~9)
*k a

Over each nondiagonal rectangle k$1'j, M has continuous partial derivatives.

Thus Taylor expanding M'tk v) - M(u,v) into

-(u -t k)M1'(t k' t -~ ~-ut d M '(t k' t - (u - t k) (v -t i)M '(t k 9t )

plus third order terms, and retaining only the lowest degree terms (M 10and

S. 2,0!1' we obtain, using (45) and (46),

10 s k+l sj+1 huhvddi kj -M '(t k't ) f f (u- t k~huhvd

120 k+l 5j+l21 ~2v(tt) 0 J2u- h(u)h(v)dudv

-'( h(w.) -)s

* and thus h ~h (t) 3 UOt~jht3}s+ Jj1-s) 2

~ f { ~(t) t)h s) - ~

b b 1 0 1 a

FinallyIadding (49)Iand (50), we find

a a.

whdCere the last eqalt is obaie inertn by pat as in (47).

. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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n2E~dtr] ; f {[M' (t-,t) - M1  (t,) - [M'(~ -, -M'(t,t+)]}dt
n 4a

1 b "lObt) M 1  ,t)

24 rr b ha)t h(t)dt (51)
a

1 ,cf lI
- YX h -f~X

where a and Ay are defined following Eq. (15).

Now (15) follows from (14), (48) and (51).

. . . . . . .. . . . . . .
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B. Expressions for the constants in (24) and (25).

Using the method of solving the integral equation (5) described in

[8, Ch. III, Sect. 7] we find

2 2
aFa + Ja

2 XaN NaX~~axaN 7T
xa x +NaN

1 2 a
XN Nx

2 2 2c 22 )a 2
M a a +a o 7 +XaxNaN X

0 X2Na a X a y -u )(a X-_aN)
M2 x aN 2 2

(xa x +aN aN)(OXaN + ONaX) S

a2 o2a - a e)

M X N2 N
(axaN + Cax) S

where

S (l- e-')(a 2 a + aN) + (I+e-1 )axaN 2o+ N .

. . .. . . . . .. - -..-.. ,. . . . . . , ., -... . a-~. . ,- - - -.- ,; , - , ,, ..-a ~ * ,, , , ; . ..,.. - a,. ', '.,",'A'> "
-' '' .". . ". ' -" " ... . ."-. ... * "., -."'"-."."" ' -"%'" * .', ."." ' ','" '", ",;- "" .- ?'', '", ",*--, ,, - ' a , ", ''',-,,*

I.'-,'.',-x -' '.x'" , ' " ''' o '' , '' - -N N ) ' ' ' Z ' r ' ' '' '....x N
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C. Proof of (30)

With the notation introduced in Appendix A we have (writing R for R Y)

I b
1st term -Z c(t k)R(t k- tjicMtj - ffR(u- v)ch(u)ch(v)dudv

n k~j a

S k+1 j+1
= y f f[R(tk-t )c(t )c(t) -R(u- v)c(u)c(v)h(u)h(v)dudv

k~j (52)

We first concentrate on the diagonal terms Ik~ and split each square

(s sk Mxsk skl into its upper and lower triangles. Then

2
ff [R(O)c (t)- R(u - v)c(u)c(v)]h(u)h(v)dudv
lower

triangle

2 ('/2)
=ff LR(O){c (t k) c(u)c(v)J - R (O+)/J-v c(u)c(v) + o(,fuiJ-v)c(u)c(v)]h(u)h(v)dudv
lower

tri angle

= R'2i(0+) ff /u--v ch(u)ch(v)dudv
lower

triangle

= R(1/2)(Q+)ch(uk)ch(vk ff /u7- dudv
k k lower

triangle

-j--R''/'( O+)ch(uk)ch(v)Msk~ -

for some (uk vk) in the lower triangle, where indicates equality up to higher

order terms. Similarly, the integral over the upper triangle has main term

4 (1/) '/2

151 -
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for some (aksbk) in the upper triangle. Using (41a) we then obtain

nE/2Ikk 15 /2)(O-) - R(/2)(O+)]I {c4) (53)

k h

For the nondiagonal terms k j, Taylor-expanding R and c we obtain,

writing ck for c(tk), c' for c(tk), etc.,

A. Ak c 3. c Bk-cc -- + c + c-R(tk t ){cCC. j -n - +  Ckj kj

i kj'kj n k j n 2 kjj n 2 k n k kc j

A A B B.
- R'(tk-tj){ckCj(--- - +(-) + cc (AAAj ) A - )}

kj jn n kj k jk n

I B k B.
- R(tk - ti)  (- +Jn - 2AkA )

k ck n n AkA.j

+ higher order terms,

where AkBk are given in (45),(46). All terms, except for those retained below e
; n-2,

have rate n so that the dominant term is

Bk B.

k,j - 2 1 tt)c(t)c(t)(-+ )
k j k#j k jkj n

and by (46) and (41a),

Ik j  4 kR-'t )c(t)c(t) {-- ----- + 2 1
kj 14n 0 h 1t 1 (

The double sum above over all terms with Itk- tjI _>e has rate n 2 , in fact

n2 t  3. I j  _ fI R-(t-s)c(t)c(s){h ) + - t)}dtds
itt kj 2 it-_s >Eht)hs

# _ -' ...................., ......... -.-.- .-.-................-. ...-..-.............. . -. . •. .

em / m a " , " " . " . . " " " ," , " * " , o . . , . ° ° , - . o . '. . " ° .o ' , . ' , k° ' .
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and the limiting constant is finite. On the other hand the same argument

shows that nI2itktj < k,j tends to the same integral as above but over

It-sl <E, which is not finite, as integration by parts and R'(0)=oo show.

Thus its rate is slower and it becomes the dominant term:

. Ikj _ n4  R-(tk  t )c (t k W tj )  + j } '

kij 24n itk-tjl<C h (tk) h (t

for each c > 0.

Differentiating the expression of R in terms of R and R we obtain
X N

2 T[x()2 RX-( T) :

(-XT)[RX(T)J + X +
R- T r 2K  {" #() 2  [1 R2, (T)12} + N()

[1- R[I(~ X .xTj i

Assuming that Rx(O±) and R-(O±) exist and are finite, it follows from 'A

T 1
ITI + 1(54a) "

2/
1I 3

12R-.(T) 2K2  X, 1

Thus for very small 3 0),

kj .

Also for c 0 and, say, k>j, we have

1 i+l
n f h = h(t!)At i  h(tj)At it

i

. for i=j,..., k, and thus summing uD

4. - •, °,- ... -o• .- - °,, . ". . °... . .... ° . . . . .. •... + .. ° A'A , - . o.- o
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k h(tj (t k -t , "•

n k t 
m

andn

and / /2

1 h/ (t ) n/

R (tk- tj) - Y,/ 2  (k-j) 3/2

Likewise, when j > k,

h/2 (tk) n/2 A

R-(tk-tjk j VyY 2  jk ) 3/2

Using also c(tk) - c(tj) , h(tk) h(tj) , we obtain that for ext 0,

kkj 96 '1/2 0 <tkj (k-j)k h (tj) O't-t<e (jkk)-.,-

As the sum extends over O< k- j< nh(t )E and O< j -k< nh(tk)E we obtain in

the limit, in view of (41a),

3 00 2 00 2 '"

n/2 1 _ 2 1 C2

k/j '96k,j 9- Y,1/2{m7  I/2 1 h'/2 + m /2 fh 2k~j y/2m1m M1 m h

= y I /(3/)fc 2 h/2 ,  (55)

These arguments for E 0 can be made precise by writing upper and lower

bounds in terms of e, and then letting e+0 as these hold for all c>0.

Combining (53) with (55) gives (30).

'4".
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D. Proof of (34) and (35)

We have

ROx (T) = ELQ(X(0) Q(X(T))] =ff Q(x) Q(y) p(x,y; RX(i)) dx dy

ftwhere p(x,y;p) is the bivariate normal density with zero means, variances one,

and correlation coefficient ~.Thus, by Price's theorem [7], we obtain

*R6X(T) ___ R(T)
x

=R'(T) ff p(x,y; R (Tu))dQ(x) dQ(y)

N

k,j=2- -jl

Rx'r N 2
* - ~~k-l) exp [

2T/'Y i-RX() 1= + R x(T)

N k j k x

kj22(1 R4(T)) J
If follows that

* 1R (T)-PQ (0)
R (0+) lim = lrn 2/v' R' T)

T-0 .1T-[4 Q

R'(O+) N 2-x /fttt

7(-2R'(O+)}' k=2 kl e

x2

1 ~/R0)'2N 2 -( + Yk-1) 2 /
ft - ir x k=2 ykk-1

k=2- -
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1/2 /2h

{-R;(0+)/7} BQ c {aX,/( 2T)}/

Similarly

(11

RQX (0-) 0 {Xo/( B0  -.B

and thus

~QX,/2 -(0-)- = /2SRX (0-) -RQX (0+) :{ 2 X,0/ 0IBQ.

This establishes (34). For (35), differentiating once the expression

above for R6x(T), we obtain

2 2( RX(T )  R (T)Rx(T)]2  N 2x
R[R (T)]/2 (lT) 2 /---{ 2 exp[- T Rx- ]

+X kj2 - -Y 1 /2P[ xY+ -xkjI(

[-Rx((T)] k:2 .

2+2 2xk  x- kX.x ] i X".
+ (Y -YNI -1 Y[ k )exp[-12 -()
kj =2 k k -2 R (T))

k=2 I+Rx(T) [I+Rx(T)]2  -

,_ Y o_ )][_ °[(

k2 2
andusng (54 ) we hav as(-)0

X 21 x, k k2

] 2 1- . 2

x BQ

establishing (35).

2

aL ~~'/ _L.X 1 2 I. . .. 12 n . . . . .x k 1 2.. " . . . i ' , . . . . ..

"-,.1"."-~ -T " " ".-;' -"--". .":."Y ,"k.. ".-":.".'" "" ""- ." -") - ?- .'.:""'.;.:-". e
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Noise present simple coefficients- solid line

Noise present optimal coefficients- solid line
Noise present nonadjusted simple coefficients- dotted line
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